作者彙整:21008G023

角的教學

角的教學-21008G023

在角的教學方面,學生易認為兩邊長較短的角比兩邊較長的角來的小,因為邊的長度造成迷思,此時老師可將短邊長的角的兩邊做延長,直到邊的長度與另一個角的邊等長,再讓學生來比較角是不是一樣大,並導引至角度的大小要看角的兩邊打開的程度。

發表於 數學教學現場Q&A | 發表迴響

圓的數學省思

圓的教學-21008G023

課堂上進行圓形的教學時,要讓學生學會找出圓心,此時學生進行摺紙時容易沒有確實的對折,折出來的變成一半大、一半小,此時教師進行巡視時,發現此情況便到台前強調「圓在對折時需要將邊緣疊在一起,不要對折後有一面會凸出來」。

之後又發現另一種情況,學生折了一條線後,便在線上看起來是中心的地方指著說那裡是圓心,學生仍舊是以主觀方式去判斷,於是教師向學生說明圓心是指圓的中心,所以中心到圓的邊緣上任何地方都要一樣長,請學生自己用尺測量他原來所指的圓心,看是否到邊緣都一樣長,測量後學生便發現有錯誤,學生再看課本後便發現可以折兩條不同位置的線來找到圓心。

另外在畫圓的時候,由於課程是先學習直徑,之後才學習半徑,所以學生在拿出圓規畫直徑為6公分的圓的時,有少部分學生仍會將圓規打開6公分,教師便畫出一個圓形,並將圓規畫上去,利用學生畫過圓的經驗引導,並詢問圓規打開的長度跟畫的圓有一樣寬嗎?學生發現不同,圓規打開的只有圓的直徑的一半,就可歸納出圓規打開的長度是圓的半徑。

發表於 數學教學現場Q&A | 發表迴響